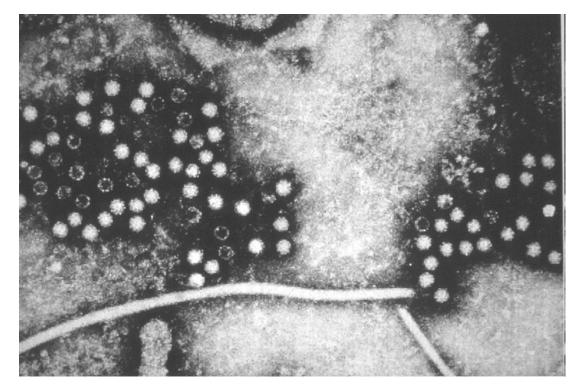
Hepatitis E virus: the analytical challenge


Nigel Cook

Jorvik Food and Environmental Virology, York, UK

Hepatitis E virus

• Family *Hepeviridae*, genus *Orthohepevirus* (1 other genus: *Piscihepevirus*)

HEV structure

• 35 nm diameter

- Single-stranded RNA genome
- 7 Kb long
- 3 ORFs, encoding non-structural polyprotein, capsid protein and a phosphoprotein

HEV classification - genotypes

Eight genotypes (based on genetic diversity):

- gt I (humans)
- gt II (humans)
- gt III (humans, pigs, deer, rabbits)
- gt IV (humans, pigs)
- gtV (wild boar)
- gtVI (wild boar)
- gtVII (camels, humans)
- gtVIII (camels)

Further divisions as subtypes

Limited diversity at amino acid level – only one serotype

HEV - pathology

- Virus replicates in intestine
- Travels to liver
- Replicates in hepatocyte cells
- Damage to liver cells through immune mechanisms
- Released into bile and bloodstream

HEV – symptoms

- Jaundice
- Fever
- Malaise
- Nausea
- abdominal discomfort
- dark urine

HEV – symptoms

- Onset 4-5 weeks after ingestion
- Duration 1-4 weeks (6 months in some cases).
- No specific treatment. Ribavirin reported useful for chronic infection
- Mortality up to 4 % (25 % in pregnant women) (only known for gt1&2)

HEV – susceptibility

• HEV infection rarely detected in children

- Increasing severity as age increases
- Genotypes 1 and 2 highly endemic in developing regions of the world, with peak incidence among 15-35 year-olds
- More common in men
- In developed countries, males over 55 high risk group

Hepatitis E - epidemiology

 HEV gt I and II cause ~3.4 million cases of acute hepatitis and ~70,000 deaths globally

• In developed countries, HEV gtI and II infections are generally attributed to travel to endemic regions

Autochthonous hepatitis E

Autochthonous: indigenous, native, formed or originating in the place where found

Autochthonous HE is not linked to travel to endemic regions; the infection is acquired in the patient's home country. Several studies have reported autochthonous cases

Most autochthonous cases due to gt3 with a few gt4

Hepatitis E in Europe

• Estimated 3,000 – 9,000 cases per annum in Europe

• Number of reported cases in UK has been increasing

HEV in pigs

• Domestic pigs are a reservoir of gt3

- Seroprevalence in pig herds is high (up to 100 %)
- Weaner pigs become infected around 12 weeks
- Up to 90 % pigs infected by 18 weeks

HEV epidemiology - pigs

- Brazil anti-HEV antibody in 80 % swine farms
- Japan anti-HEV antibody in 93 % swine farms
- Netherlands 55 % swine farms HEV in feces
- New Zealand anti-HEV antibody in 90 % swine farms
- Poland anti-HEV antibody in 50 % wild boars
- UK anti-HEV antibody in 75 % pigs; 25 % fatteners excreting virus

HEV in pigs

- Virus shed 3 7 weeks
- Virus replicates in liver
- Viremia normally 1 2 weeks
- No symptoms of infection in pigs
- 6 months pigs go to slaughter, can still be infected

HEV in the food supply chain

- Domestic pigs naturally infected at early age
- Can still harbor virus in liver at slaughter
- Some pigs can still be viremic (virus circulating in blood) at slaughter
- No indication of infection cannot be detected at slaughterhouse
- No official control policies

HEV in pork products – intrinsic contamination

GR FEV

HEV infection has been linked to pork product consumption

- Czech republic tripe sausages
- France raw figatelli sausages, undercooked pig liver
- Germany offal, boar meat
- Hungary home-prepared pork sausage
- The Netherlands dry raw pork meat sausages
- Spain pork meat, wild boar meat
- UK Consumption of pork pies, ham and sausages (from a major supermarket chain) significantly linked to infection

HEV recognised as zoonotic

• European Food Safety Authority (2011)

• UK DEFRA zoonosis report (2013)

HEV zoonosis

- UK blood donor study (Hewitt et al. (2014). The Lancet http://dx.doi.org/10.1016/S0140-6736(14)61034-5)
- 225,000 donations tested
- 79 donations– HEV gt3 genome detected
- Indication that at least 80,000 infections annually in England
- Most infections subclinical, but number of cases rising (124 in 2002, 249 in 2009, 1202 in 2019)

HEV infection linked to pork products

• European Food Safety Authority (EFSA) has concluded that consumption of raw or undercooked pork meat and liver is the most common cause of hepatitis E infection in the EU.

Research currently underway

• to fully identify where links exist between food consumption and hepatitis E

• to quantify the risks posed by HEV in foods

• To develop methods to detect the virus in foods

• To determine the prevalence of HEV in the food supply

HEV detected in pork products

- Canada pate, liver
- France –foods containing raw pork liver
- Germany liver, sausages
- UK sausages
- USA liver

Testing of retail pork-based products

• Can result in some negative media activity

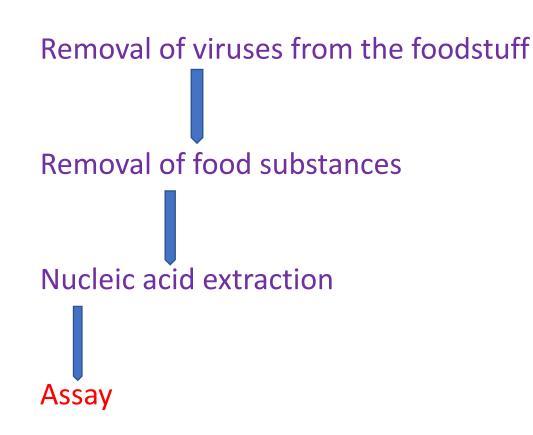
 Impact on political and economic exportation policies - in 2014, UK / China food exports temporarily halted following a BBC website report*

*White, K. The Grocer. 2017. https://www.thegrocer.co.uk/food-safety/pig-industry-fears-loss-of-china-access-after-hep-e-reports/553257.article

Testing of meat and meat products for HEV

• A range of various methods developed in various laboratories

• Majority based on RT-PCR


• Most used the universal HEV assay of Jothikumar et al. (2006) J. Virol. Methods 2006, 131, 65–71.

• No standard method

General steps of a method for detection of viruses in food

2 basic parts – sample treatment, and detection assay

VITAL* method for HEV detection in pork meat

1 cm³ pieces chopped,

4 ml lysis buffer added

homogenised by grinding

250 ml homogenate + 1 ml buffer + 2.5 g zirconia beads

mechanical disruption

centrifugation

800 ml supernatant processed by commercial NA extraction kit

300 ml extract

10 ml used for RT-PCR

Meat is a challenging matrix

Matrix	Sample Size (g)	Sample Treatment (Prior to NA Extraction)	Reference
liver	5–20 g	Blending in PBS	[41]
liver	150 mg	Homogenisation by scalpel, bead disruption, proteinase K	[32]
liver	0.1 mg	Homogenisation by beating with zirconia beads, lysis reagent, chloroform, centrifugation, gel separation	[56]
dried and liquid blood products	200 mg	Mixing with glycine buffer + beef extract	[53]
figatellu	10 mg	Fat discarded, homogenisation in PBS, centrifugation	[26]
liver, kidney, heart	1 cm^3	As [32] then lysis reagent and chloroform extraction	[36]
liver, sausage, figatellu	3 g	Cell disruption in dH ₂ O	[47]
liver, meat	10 mg	Bead disruption	[22]
liver sausage	3 g	Stomaching in dH_2O , centrifugation	[44]
liver, pate, raw sausages		Homogenisation (ultrasonication?) in Glycine buffer pH9.5, filtration, centrifugation, PEG precipitation, lysis reagent	[55]
liver	1–10 g	As [32] then ultrafiltration	[39]
salami, boar liver	salami, 5 g; boar liver, 2 g	Stomaching in 7 mL lysis reagent centrifugation, chloroform extraction	[48]
liver	10–20 mg	Homogenisation by mortar and pestle	[27]
liver, chops	liver, 312 mg; chops, 262 mg	Mechanical disruption in lysis buffer, centrifugation	[23]

A variety of sample treatments have been used *

A standard method is required for HEV detection in meat

• Ensure reproducibility between laboratories

• Compare data from labs using different methods

• More industry confidence in data

• Facilitate regulations

ISO / TC34 / SC9 / WG31 "Hepatis E virus"

- Project began November 2021
- 26 members
- 12 countries
- Belgium (1 member), Canada (1), Finland (2), France (3), Germany (2), Italy (1), Kenya (2), Netherlands (4), Spain (2), Sweden (1), UK (4, including the Convenor), USA (3)
- 3 meetings already held

HEV standard under development

• Scope will focus on meat and meat products, including liver and liver products

• Will be based on RT-PCR.

• Will be focused on detection (not quantification).

• Will not include methods for assessing infectivity

HEV standard

 Draft title: Microbiology of the food chain -determination of hepatitis E virus in meat and meat products, and liver and liver products, using real-time RT-PCR

•

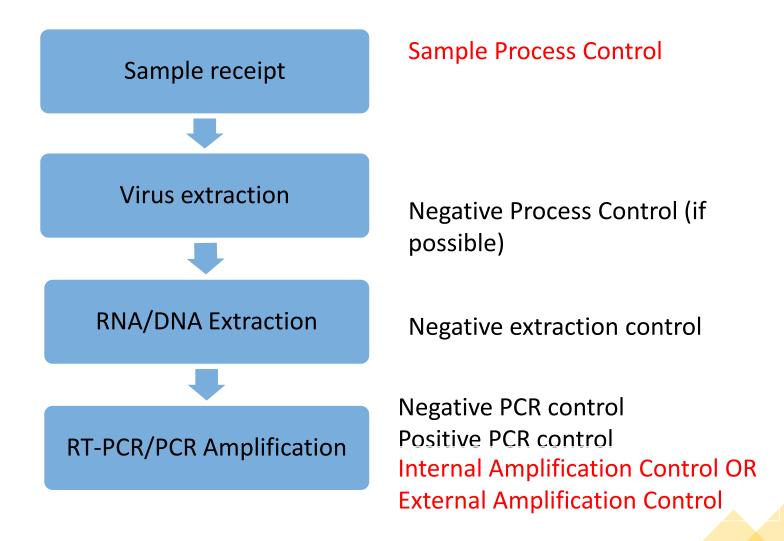
Could mirror ISO 15216-2: 2019 "Microbiology of the food chain - Horizontal method for determination of hepatitis A virus and norovirus using real-time RT-PCR - Part 2: Method for detection"

HEV standard – 3 options

• Adopt already validated method as basis

• Adopt forthcoming method once validated

• Merge existing published and in-house methods


HEV standard - controls

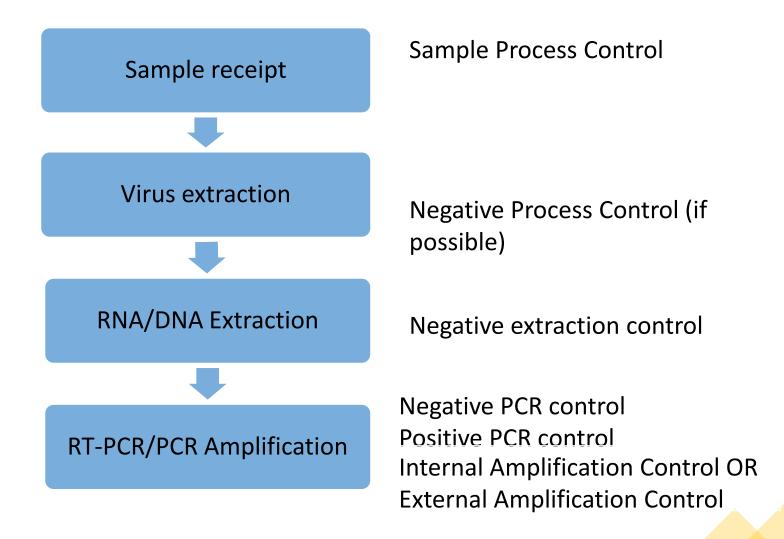
• The chosen method may require additional controls

• The format / composition of key controls will be decided

Flow of controls in detection of foodborne viruses

Sample process control virus (SPCV)

- Purpose: To verify that sample treatment has functioned correctly, and evaluate recovery efficiency of target
- Description: It is a non-target virus, added to every test sample at the start of analysis (upon receipt)
- Interpretation: The SPCV must be detected in every sample into which it has been added, and at an agreed recovery efficiency



Which is best SPCV for the HEV standard?

- Mengovirus
- Murine norovirus
- Feline calicivirus
- Porcine teschovirus
- Fish hepevirus

Flow of controls in detection of foodborne viruses

Amplification control

• Purpose: To verify reactions which have functioned correctly, and identify those which have been inhibited

• Description: RNA containing target virus sequences

• 2 possible formats – external (EAC) or internal (IAC)

Which is best AC for the HEV standard?

• EAC - used in ISO15216, avoids competition with target, but doubles reactions and may cause false +ves

- IAC 2 types:
 - homologous uses same primers as target, requires optimization
 - heterologous uses different primers to target, may not fully control for inhibition

WG31 future steps

• Decision on basis of standard by December 2022

• 1st working draft of standard to be completed by Spring 2024

• Interlaboratory validation, possibly 2025/26 via EURL

• Full standard in 2026/27?

A British standard?

• FSA project FS307033 "Optimising extraction and RT-qPCR-based detection of hepatitis E virus (HEV) from pork meat and products (HEVdetect)"

• Fully controlled RTPCR-based method developed

• Validation complete by March 2023

